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i. Introduction

The adaptive observer concept is a scheme for determining the state of a

system possessing unknown parameters when only the system input, output, and

form are known. The first reported adaptive observer, for single-input single-

output time invariant linear systems, appeared in [1] and [2]. A modification

of this observer to simplify the adaptive dynamics was subsequently reported [31.

Both these schemes exhibit the desirable properties that the eigenvalues of the

observer matrix may be freely chosen (an important capability for systems with

measurements corrupted by noise), that the simple Liapunov adaptive algorithm is

implemented entirely on line during system operation, that no derivative networks

are required in the adaptive algorithm, and that both the state of the system

under observation and the unknown parameters of that system are progressively

determined regardless of the magnitude of parameter ignorance.

In [4] the single-input single-output adaptive observer was extended to

cyclic multivariable systems by introducing a suitable transformation that

converts the system to a single-output system. Consequently the multivariable

adaptive observer in this scheme is of the same order as the system regardless

of the number of system outputs available, and the number of adaptive gains

needed to implement the observer algorithm equals at least the sum of the

system order and the number of input parameters being adapted.

In this paper an adaptive observer for multivariable systems is

reported for which the dynamic order of the observer is reduced, subject to

mild restrictions given in Theorem 1, to n-p+l where n is the order of the

system being observed and p is the number of independent output measurements.

The observer structure which is developed here depends directly upon the
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multivariable structure of the system rather than a transformation to a

single-output system. The number of adaptive gains is at most the sum of the

order of the system and the number of input parameters being adapted. Moreover,

for the relatively frequent specific cases for which the number of required

adaptive gains is less than the sum of system order and input parameters, the

number of these gains is easily determined by inspection of the system structure.

This adaptive observer possesses all the properties ascribed earlier to the

single-input single-output adaptive observer. Like the other adaptive observers

mentioned, some restriction is required of the allowable system command input

to guarantee convergence of the adaptive algorithm, but the restriction is
the

more lenient than that required by/full-order multivariable observer in [4].

Finally, this reduced observer is not restricted to cyclic systems as is [4].

2. The Problem To Be Solved

An observable and controllable linear time-invarient dynamical system

described by

0
x = Ax + Br x(tO ) = x

°

y =Cx (1)

is considered, where x(t)e n is the state of the system, r(t)E m is the

command input and y(t)E rP is the output. For purposes of this paper, (1) is

multivariable with n>p>l and m>l, the pair (C,A) is completely observable, and

the pair (A,B) is completely controllable. A and B are appropriately -

dimensioned matrices having parameters of unknown value. C is a known matrix of

dimension pm.

The problem is to determine the state x of (1) using only the input r, the

output y, and the structure, but not the values, of matrices A and B.
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This is to be accomplished by a generating process which duplicates as little

as possible the state information available in the output; thus the generating

process is said to be a reduced adaptive observer.

The reduced adaptive observer is of the form

S= F + Gy + Dr + Hu
(2)

E(to ) = 50

where CE n-p+l is the estimate of the missing state information in the output

of (1). The matrices G and D and the vector u are to be adaptively manipulated

so as to guarantee that E asymptotically equals a transformation of the unknown

state variables in (1). F may have arbitrary distinct eigenvalues.

The state x can be ultimately constructed once the transformation has been

identified. Figure 1 illustrates the situation.

3. The Strategy of the Solution

The transformation T, indicated by T-1 in Figure 1, allows the system (1)

to be assumed to be in a form suitable for constructing an adaptive law based

upon Liapunov synthesis techniques.

The strategy for solving the problem posed in Section 2 is to first deter-

mine the effects of parameter uncertainty in the system upon the accuracy of

the observer estimate of the system state. In Section 4 an error vector is

defined as a comparison between the transformed system state and the observer

estimate; subsequently an error equation is derived reflecting the influences

of parameter uncertainty in the system. Theorem 1 of Section 5 defines suffi-

cient conditions under which (1) may be transformed into a form suitable for

a Liapunov synthesis technique. It is seen in this section that with this

form the error equation may be considerably simplified. In Section 6 the

Liapunov adaptive synthesis technique is used to derive an adaptive law. The
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essence of this method is to define the adaptable parameters in such a way as

to insure, by means of a Liapunov function, that the error equation is

asymptotically stable. Due to the fact that the resulting Liapunov function

chosen here (as may be seen by equation (18) and (20)) is defined on a non-

compact manifold, Theorem 2 gives sufficient restriction upon the system input

to insure that the error equation is asymptotically stable on the compact

manifold. Thus an estimate of the system state, which asymptotically converges

to the true system state, may be obtained by inverting the original transformation

of the system as indicated in Section 7.

As an illustration of the technique of this paper, an example is given in

Section 8 and a computer simulation of this example appears in Section 9.

It is propitious to collect here certain definitions which allow brevity

in the remaining sections of this paper. The motivations for these definitions

will be discussed in the appropriate locations.

Definition 1

x'p hereafter refers to the collection of all non-singular square'J n,p

matrices T of dimension nxn having the following properties

T may be partitioned as

(p-l)x(p-1) (p-l)x(n-p+1)

11 T12

T Tin

21 22

(n-p+l)x(p-l) (n-p+l)x(n-p+l)

wherein a) T12 =O;

b) each element in the uppermost row of T21 is independent of any system

parameter.
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and c) the uppermost row of T22 is [C 0 0 ... 01] with C O0.

When there is no possibility of confusion, n, will be referred to as f.

Definition 2

The "adaptive canonical form" refers to all matrices A of dimension nxn

having the following properties:

in the partition

A =  ~

21 A2 2j

a) A22 has the form

cl 1 1 1... 1

0

0

0 n-p

O (n-p+l)x(n-ptl)

where A is a diagonal matrix with distinct eigonvalues of dimension
n-p

n-p and al any real number,

and b) A21 has no more than n-i non-zero elements.

4. The Error Equation

The development of the error equation is somewhat similar to that in [5]

for systems with known parameters.
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Without restriction if C is known, it may be assumed in (1) that C=[I p 0O

0-1
where I is a pxp identity matrix. For example, the transformation x =E93 x

transforms (1) into this form for any C, where H is selected to make the

transformation matrix non-singular. Then in partitioned form (1) is written

as

y = Ally A12w + Blr

S= A21 + A22w + B2r (3)

1 2

where y c P-I and w E n-p+l. The dimensions of y and w indicate the

dimensions of the partitions in (3). Since only w is to be estimated by the

adaptive observer, the dimension of the vector w is chosen as.small as possible

while still retaining an element of the output, which is essential for implement-

ation of the adaptive law.

The adaptive observer is initially described by

j = FE + (FK + G-KM)y - Ky + (D-KB )r + Hu (4)

in which C E n If at this point (4) is taken as a hypothesis f6r a

generator of w, it will be shown that the error between w and a function of

E can be made to vanish by adaptively adjusting G, D, and K. It will be

subsequently shown that a suitable transformation of (3) allows (4) to be

rendered unto (2).

Let an estimate of w be E + Ky. Then defining, as in [5], the error

e = , + Ky - w (5)

on the reduced space n-p+l , it follows that
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e = 5 + Ky + Ky - w

= F(E + Ky - w) + (F - A2 2 )w + (G - A21 9

+ K(y - Mj) +(D - B2 - KBl)r + Hu

Defining M = M-All so that y - M = y - Aly - My = Al2w + B l r - My, then

S= Fe + (F - A22 + KA 2)W + (G - A 21- KM)y (6)

+ (D - B2 )r + Hu

in which it is seen that the reduced error depends upon both the measurable

vector y and the unmeasurable (save the first element) vector w. It is impossible

in a manner similar to the Luenberger observer [6,7] to define F = A22 - KA12,

M = All, D = B2 , G = A2 1 , and H = 0 to eliminate these dependences from (6),

since A and B are here unknomn.

Rather,it is desired to adaptively adjust the triple (G, D, K) so that the

coefficients of w, y, and r in (6) eventually vanish. Then if F is chosen with

eigenvalues all with negative real parts and if u -* 0, the reduced error e

vanishes.

5. The Transformation

If it is possible to show with respect to (3) that a suitable transformation

-l
matrix T exists so that TIl=CT and that A=T- AT is in adaptive canonical form with

the -
/ partition element A22 = T2 2  (A 2 2 - T2 1 AI 2 ) T2 2 having arbitrary specified eigen-

values, then setting F = A22 in the equation (analogous to (6))

= Fe + (F - A22 + KA12) + (G- A21 - KM)y (7)

+ (D - B2)r + Hu2u
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permits defining K = 0. Doing this is advantageous since the influence of w

in (7) is eliminated, the necessity of adapting K is removed, and (since M is

related to All) the influence of unknown elements of A T I1 (Al T + A T21
11 11 11 11 12 21

is diminished.

As will be seen, under some restrictions on A a transformation T can be found

that satisfies the preceeding requirement and the additional requirement that

T11 = CT be independent of parameters of A. By virtue of this latter requirement

the outputs can be treated as transformed state variables without specifically

identifying T.

For suitable definition of u, the transformation which satisfies these

requirements is a member of the collection j and the transformed matrix

A = T- AT is in adaptive canonical form. Theorem 1 gives sufficient conditions

on A for the existence of such a T E .

In the following theorem, let the symbol <[x] denote the range of X, let

Q [C 0 0 ... 0], C 9 0 be a row vector of dimension 1 x (n-p+l), and let

A22 denote the (n-p+l) x (n-p+l) partition of 
the adaptive canonical form.

Theorem 1

Let the pair (A 12 . A2 2 ) of the matrix A be conpletely observable. Then

there exists a T E ) that transforms A into the adaptive canonical form in which

n-p eigenvalues of A2 2 may be almost arbitrarily chosen.

If in addition, (JGC (PT [A1 2 ], then the n-p eigenvalues of A2 2 may be

arbitrarily chosen.

Proof. The proof is in two parts: to show that a T E - exists that puts A2 2 into

adaptive canonical form with the desired properties, and that A2 1 also satisfies

the requirements of the adaptive canonical form.
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Suppose that (A 2 2 ' A1 2 ) of the matrix A is completely observable. According

to the definition of , the (n-p+l) x (n-p+l) partition T2 2 of T s Cis arbitrary

except for the uppermost row which is Q = [C 0 0 ... 0], C V 0. Since A22-2

22 (A22 - T21A12)T22, where T21 is the (n-p+l) x (p-1) partition of T E J, it

must be shown that A22 is of the form required by definition of the adaptive can-

onical form, and that by choice T21 the n-p eigenvalues can be freely chosen. It

has been shown [3] that there exists a matrix T22 of the required form which

transforms a cyclic matrix P into A22 + L, where L is a matrix having only the

leftmost column non-zero, if and only if (Q,P) is completely observable. In the

present context, P E A2 2 -T 2 1 A12. Thus if by choice of T2 1 , P can have n-p eigen-

values equal to the desired eigenvalues of A2 and if (Q,P) is completely observable

for this choice of T2 1 , then L = 0 (except perhaps for the element in the upper

left corner, which is irrelevant by definition of the adaptive canonical form).

Suppose first that I[Q T]C ([A 2 ]. Then for any choice of T21 the pair

(Q, A2 2 - T2 1 A1 2 ) is completely observable and at least n-p eigenvalues of A22

T21AI2 can be arbitrarily chosen [8]. Therefore A22 = T22 A22 -T21A) T is2112 22 22 (A22 2112 22

in adaptive canonical form with arbitrary eigenvalues for some choice of T21 and

T22 of Te ed.

Suppose now that [(RQT] [AI2]. Since the pair (A1 2 , A22 ) is completely

observable, at least n-p eigenvalues of P = A2 2 - T21AI2 can be arbitrarily chosen

but (Q, P) may not be observable. A trivial extension of Theorem 4 of [10] says

that the set R.=E {T2 1 1(A2 2 -T 2 1 A1 2 , Q) not observable} is either an empty set or a

hypersurface in the parameter space of T21 when the pair (A2 2 , A12) is completely

observable. Consequently A2 2 is in adaptive canonical form with almost arbitrary

eigenvalues for some choice of T22 and T2 1 of T E since the choices of T21

is limited to those T2 1 W i<. Thus the first part of the theorem is proved.
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Now it is shown that A2 1 has no more than n-i non-zero elements with the

appropriate choice of T e I. In the (n-p+l) x (p-1) partition T2 1 of T E

there are (n-p+l)(p-1) - (p-1) = (n-p)(p-1) parameter-dependent elements. At

most n-p of these elements are needed to specify the n-p eigenvalues of A22 -T21A 12

Therefore, at least (n-.p)(p-1) - (n-p) = (n-p)(p-2) parameter-dependent elements

of T21 are unspecified. Each unspecified element may be specified so as to make
-1 -1

an element of A = T22 (A21T11 + A22T21 - T21T1 A 11T11 - T21A12T21) zero.

Since there are at most (n-p+l)(p-1) non-zero elements in A12 eliminating
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(n-p)(p-2) of them leaves at most (n-p+l)(p-l) - (n-p)(p-2) = n-1 non-zero

elements in A21. Thus the theorem is proved.

Corollary

If in addition to the requirements of the theorem the pair (Q, A22) is

completely observable where Q = [C 0 0 ... 0] , C , O0 then the uppermost

row of the partition T21 of T E J may be chosen as zero.

Proof

The proof of the theorem requires that (Q, A22 - T21A12) be completely

observable for some choice of T21. If (Q, A22 ) is observable, then (Q, A22

T21 A 2) is completely observable by the trivial choice T2 1 = 0. However,

since n-r eigenvalues of A22 - T21A 12 are to be arbitrarily chosen by choice of

T21 and at least (n-p)(p-2) elements of A2 1 are to be chosen zero by choice

of T2 1 , it generally requires all but 
p-1 non-zero elements of T2 1. Generally

these elements must be parameter-dependent; thus only the 
p-i parameter-

independent elements appearing in the uppermost row of T2 1 may be zero.

6. The Adaptive Law

It is assumed that (3) satisfies the conditions of Theorem 1 and consequentl,

may be written as

y = Ally + Al2w + Bl (8)

w = A21Y + A22w + B2r

y [
where A if of adaptive canonical form and the scalar w is a linear combination

of w1 and elements of y. The scalar w is constructed externally to the system

in accordance with the upper row of T2 1 so that the transformed system output

matrix is in the form assumed in (3). Accordinv to the corollary, i, = w1 if

(Q, A22 ) is completely observable.
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F in (2) is taken as

-.x. 1 1 1 ... 1

0

0

F 0 A (9)
n-p

0 (n-p+l) x (n-p+l)

for X1 any real number distinct from the distinct eigenvalues of the diagonal

matrix An-p . Let hlul :: (a + 1- l)W 1 and (7) may be written

e = Fe + 4y + Yr + Hu (10)

e(t0 )= e0

where P = G - A and Y = D - B,. The other elements of u will be defined later.
21

The adaptive law for ( and Y in (10) must be defined in terms of only those

variables which are available for measurement. Consequently (10) will be mani-

pulated in a way to obtain a scalar equation, equivalent to (10), for which

such an adaptive law can be formulated.

Let the (n-p+l) x (p-l) matrix V be defined as

T .

y

S - - - - - (11)

(pI-A) - hl y

in which p means and h = El 1 1 ... 1 1 of appropriate dimension.
dt 1

Clearly the (n-p) x (p-1) submatrix (pI -An-p-ly T is composed of filtered
ututis composed of filtered

output variables.
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In a similar manner, let the (n-p+l) x m matrix S be defined as

S = (12)

(pI-A)-1 h2 rT

T
in which h = El 1 1 ... 1] of appropriate dimension. It will later be shown

that the adaptive law requires at most n-l elements of V.

Consider now the lowermost n-p scalar equations of (10). The ith equation,

2 < i < n-p+l, is
p-i m

e. -. e. + 1 $ij Yj + .. r. + h.u. (13)
j=1 j=1

If in (13) h.ui, 2 < i < n-p+l, is defined as
hlU1 = lW

h1 1 4)1w

p-1 m
h.u. = . v.1 +  . . s.. (14)
1 j=1 j=l 3 1

2 < i < n-p+1

then (13) is a separable differential equation for each i. To show this, the

identities for each i

p-id p-l p-1

" v. - d - 0.. v..
13 dt ij 13 13 13j=1 j=1 j=1

m d m m

1 dt 13 ij sij 13j=l j=1 j=1

are needed. Using them, (13) becomes
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p-I m
ei = -Xiei + I ij Yj + ..ij r.

j=1 j=1 j

p-1 m

d j 1i I ij 13

j= 1 j=1

Substituting (11) and (12) into the above yields

d p-1 m p-1 m
--e i -"i . v.. - s.. -[e. - v.. - . s..]dt- 1 13 ij 1 i 1j 13 ij 1"=1 j=1 j=l j=1

(15)

(15) is integrated to yield
p-i m

ei = i.. v.. + i..j s.. + 8. exp[-Ait] (16)
-. 1 7 1 1 13 1=1 j=l

where
p-i m

e. = e - l i..(t) v..(t) - I ..(t) s..(t)
1 j=1 j=1 l 1

at t = to.

Equation (16) is applied to the first equation of (10) giving

el = -lel + tr T V + tr TS + 41yp i+ 6 exp [-Xit] (17)
i=2

It is thus seen that (10) and (17) are equivalent, with definition of u in

(14), but with the difference that (17) is a scalar equation. The adaptive

law, dependent upon measurable variables only, may now be formulated.

A Liapunov function candidate is selected as

V = e2 + 6 2 + tr (A 9T ) + tr (r T © ~0) (18)
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in which A and r are matrices having no non-positive element and the

symbol 0 represents element-by-element multiplication of matrices. The

time derivative of (18) along the trajectory described by (17) is.

A 2 22V -lel (1 1 + ype) 1

+ tr T (A® + Ve ) + tr Y T(r ® ' + Se )
(19)

+n l . exp[-Xitle 1
i=2

Then (19) can be made

2 = -e + e. exp[- Xtle
1 =21 (20)

whenever 1, ~, and T are defined as

2

61 1 -Ypel

A -- Vel (21)

rF = - Se

Equations (21) may be also written in scalar form as

1
-- ypel

S 62 p1

1 *

4.. .-- v.j el = -g (21a)

ij 2 13 1
Yii
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for each i, j in their proper domains. Equations (21) or (21a) are the

adaptive laws sought.

V is eventually negative definite whenever all the eigenvalues

-Xl' 2' ""' -n-pi have negatlve real parts since the. the initial

condition disturbances 9. decay exponentially. Consequently el is asymptotically

stable in the sense of Liapunov.

It is desired that lim e(t) = 0 in order for the adaptive observer to

generate the system state. If some restriction on the input vector r is imposed,

it can be shown that e 1 -0 implies e*O.

To see this, consider the limiting value of (17) which is

0 = tr DT V + tr TT S + 1 yp  (22)

If by suitably restricting r, or equivalently V, S, and y p, so that (22)

implies in the limit that T = 0, T = 0, and = O, then (10) is

e = Fe

implying e*O since F is an aymptotically stable matrix. The above equation

follows from (10) since u., 2 < i < n-p+l, is zero in the limit as evident

from (14) and (21).

The following theorem defines the restriction on r guaranteeing 0=0, T=0,

and )1=0 for el=0 when the steady state r is periodic.

Theorem 2.

Let q be the number of adaptive parameters in the observer (2), let the

observer matrix F have eigenvalues all with negative real parts, and let the

system (3) be completely controllable through each colwum vector in the input

matrix B. If the collection of inputs {r1, r2 , ... , rm} possesses no fewer than

q )/21 distinct steady-state frequencies, then (2) generates the system state.
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Proof.

The proof is by induction. It is shown [2,3] that the theorem holds for

m=l. Assuming that the theorem holds for m=mlit will be shown that it holds

for m=ml+l.

Let each yj, 1 < j < p, be related to the inputs rl, r 2 , ... , rml+1 by

ml+1

Yj = hjk(P) rk
k=l

where p R d/dt.

Then (22) is

ml+ p-1 n- +1 -i hjk(P) ik
0 = I {I + ( h +j p(P) +  )

k=l j=1 i=2 j=l i i

+ 1 hpk(P)} rk (23)

Since, by (20), e1--0 and, by (21), j j, 4ij. and 1 are constants, (23) may

be written

H1()r + H2(+ H H(pml +(p)rm = Hml+(p)rml (24)

where Hk(p) are the terms in brackets in (23) for each k, 1 < k < ml+1. Let

the number of distinct adaptive coefficients in the left side of (24) be ql

and the number of distinct adaptive coefficients in Hml+ 1 (p) be q2. By defini-

tion q=q 1 + q2. By assumption {r 1 , r 2 , ... , rml} contains [(ql + 1)/2] distinct

frequencies and the left side of (24) is zero since H1 (p) = H2 (p) = ... = H(P)=

and

0 = Hml+1(p)rm +1
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Therefore only the distinct coefficients of H ml+(p) are non-zero. By

inspection of (23), these are the pik terms which are q2 in number. Thus

by [2,3] if rml+l contains at least [(q)/2] distinct frequencies (i.e. distinct

from the frequencies of {rl, r 2 , ... , r ) then Hml+(p) = 0. Consequently

{rl, r 2 , ... , rml+1  containing [(q)/2] distinct frequencies implies that H1 (p)

H2(p) = ... = Hml+l(p) which was to be proved.

Theorem 3

Let the conditions on the observer (2) be as stated in Theorem 2, but let

there be no requirement upon the column vectors of the input matrix B of the system

(3). Then it is sufficient that each input r. e r each possess [(q)/ 2 ] distinct

steady-state frequencies in order for (2) to generate the system state.

Proof:

The proof follcws from equation (23). When any hjk(p) is zero or linearly

dependent, then the parameters ij and pij are not fully "coupled" with each of

the inputs rk of equation (23). This in general requires that frequencies must be

assigned to each rk depending upon the degree of freedom in the coefficient of rk

in equation (23). Assuming complete "decoupling" of each and i with respect to

each rk, it is clearly sufficient that each rk must possess [(q)/2] frequencies

from equation (24).

Remark: The sufficient conditions stated in Theorem 3 are noted to be very

conservative as a cursory glance at the proof of this theorem reveals. It is

suspected by the authors that under the conditions of Theorem 3 the requirement

for state generation may be liberalized to allow only the collection of inputs
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f{r , r 2 , .. , r m } possess [(q)/2] steady-state frequencies, as in Theorem 2, but

with the additional restriction that the frequencies must be assigned in some

way depending upon the controllability structure of system (3).

At the time of this writing however, the above speculation has not been

proved.

7. Reconstruction of the System State

The observer (2) generates the state of the transformed system (8). To

obtain the state of the system (1) the observer estimate must be transformed

by

where x is the estimate of the system state x. T cannot be immediately written

since it contains unknown elements of A; however, sufficient identification of the

system matrix A occurs as a result of the adaptive laws (21) to allow T to be

determined. Consequently the time-varying matrix T(G,D) may be constructed so that

x =T(G,D)

is the observer estimate of x. Since lim T(G,D) = T the state x is obtained.
t-+w

Theorem 4 summarizes the results of this paper.

Theorem 4

The state of system (1) may be adaptively constructed by the observer (2)

by employing the adaptive algorithm (21) and the control vector u of (14), both

subject to definitions (11) and (12) if
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a) in (1) the partition (A1 2' A2 2 ) is completely

observable, and

b) the number of distinct frequencies in the system

conmmand input r is no fewer than [(q + 1)/21 where

q is the number of parameters to be adapted. Moreover,

the number of parameters to be adapted is not greater

than n plus the number of input parameters.

8. Example

A specific example is given here to illustrate the design of a reduced-

order adaptive observer.

Suppose the system is represented by

x -a 3  1 0 0 x 0 0

x2 -a 2  0 1 0 x2  b 0

S = - + (1
x3  -a 1  0 0 1 x 3  0 r (

x -a 0 0 0 x 0 b

yl 1 0 0 0 x1

Y2 0 1 0 0 X2

30 0 1 0 x 3

x 4

with aO , al, a2 , a3 , bl, and b 2 unknown constants. (This is, of course, not the

most general input matrix.)
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It is seen that (A2, A22 0 0 is completely observable.
Therefore there exists a nor-singular square transformation T E that puts

(1*) into adaptive canonical form. Such a matrix is

1 0 0 0

0 1 0 0
T=

0 0 1 0

2
a - 2  A2 1

Note that the uppermost row of T21 is zero since ([1 0], A22) is a

completely observable pair.

Then

S-a 3  1 0 0 x 0 0

2 -a2  0 1 0 x2  b1 0 rl1

0 - 2 x + 0 r0 2

Aa 0 x b

4  2 1 2 4 12 b2

1 0 0 0

Y= 0 1 0 0 x

0 1 0

2
where T = a l a 3  - a2  2 -a 0

From the form of (3*) it is seen that

¢21 = g2 1 -T

22 g-2 2 + (al 2

d 2  (10*)
21 = d21 - bl 2

22 = d22 -b 22 22 2
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is to be adapted. Note that only 4 parameters need to be adapted for which

in (1*) there are 6 unknowns.

The adaptive laws are

2 1 - T 1 el
21 621 21 1

* 1

2 2  - 622 V2 2 el

Y21

s e
22 y 22 22 122

in which e = 1 - 3 , and the reduced observer is

1 0 -- Y " 0 -o u
1: I 1I 1 1 0 2 1 r 1 ul

1 2 1 2 22 2 2

with

u 1 = + ( 1 + 2)Y3

u2 = 2121 + 22v22 + *21s21 + t22s22 (14*)

1 2 1 2 1 2 1 2
--- v21 +  5- v22 - s21 Y s22)el
21 22 Y21 22

and v 2 1 X+ 2 v2 1 = (11)

v22 + 2v22 = Y2

21 + 2s21 = r(12*)

s 2 2 + X2s22 = r 2
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The observer eigenvalues, -X1 and -X2, are arbitrary but distinct negative

nurrbers.

The state x of system (1*) may be reconstructed by the equation

x= T(G,D) 1
where

1 ' 0 0 0

0 1 0 0
T = lim T(G,D) = lim

t- t. 0 0 1 0

3 2
g(t)+x2 -A2 X 1
22 2 2 2

9. Computer Simulation

The system of Section 8 was simulated on a digital computer. The system

parametersassumed unknown were b2 , a3 , a21 , and ao. The following values

were chosen for simulation:

a= 15 b =  21 = 1/10
0 1

a= 33.5 b2 = 2 622 = 1/250

a2 = 26.0 X1 = 10 21(0) = 180.25

a3= 8.5 x2 = 5 J22(0) = -100

The inputs r1 and r2 were chosen as sine waves with frequencies of 3.5 and 5

rad/sec. respectively. The behavior of the two adaptive parameters t21 and

22 are shown in Figure 2 and the 
(transformed) observer error e2 

is shown

in Figure 3.

Conclusions

A reduced adaptive observer has been shown to estimate the state of an

unknown multivariable system. Significant reduction in the order of the observe:

and the number of adaptive gains may be obtained by this method. In addition
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to generating the state of a system with unknowr, parameters, partial

identificatioa of the parameter is accomplished. Full freedom is allowed

in the selection of observer eigenvalues, thus allowi;g some suppression

of inherent system noise.

At present no other reduced adaptive observer has been reported in

the literature.
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